Adapt

On-farm changes in the face of climate change

Top Five Crops to Watch

- Almonds
- Pistachios
- Stone Fruit
- Wine & Table Grapes
- Tomatoes

More Heatwaves and Less Chill for California

The agricultural economy of certain counties in California are more vulnerable to projected changes in climate than others; this flyer details on-farm adaptation strategies to mitigate some of the effects of increased winter temperatures and frequency of summer heatwaves.

Projected conditions put the most strain on heat intolerant crops and crops with high chill requirements. Crops with these characteristics that also have a high market value or are grown in large acreage, make a county vulnerable to economic declines. Information on this flyer highlights the most vulnerable counties in California Area 3 and crops which are causing this.

For more detailed advice, please reach out to the UC Cooperative Extension Specialists listed to the left.

Color scale based on vulnerability index calculated in Kerr et al. 2017. Scale is specific to Area 3 not scaled across state. 1=lowest impact 5=highest impact. Maps produced by Jake Dialesandro December 2017.
Almonds orchards will likely cause declines in the agricultural economy of Fresno, Kern, Kings, Madera, Merced, and Tulare. Almonds’ summer heat vulnerability, chill-portion requirements, dependency on bee pollination, and increased pest pressure with warmer weather coupled with their high value make them an economic driving force. Adaptation strategies include frost avoidance through heat reflection products to delay bloom, changes in harvest timeframe to avoid pest pressures, and deficit irrigation strategies to adapt to statewide drought conditions. Planting natural pollinator habitat could alleviate honey bee population decline and breeding programs to develop low-chill, self-pollinating, insect resistant, and earlier yielding varieties will be essential to the longevity of almond orchards in California.

Pistachios cause economically vulnerable in Fresno, Kern, Kings, Madera, and Tulare due to the large acreage coupled with projected winter temperature increases. It is predicted that by 2060 winter chill will decrease significantly in the Central Valley; transitioning to low-chill cultivars may address loss of winter chill. Pistachios are also moderately vulnerable to increases in summer pests. Managing for uniform maturity timing could reduce pest pressure. Lastly, producers could benefit from advocating for more research and breeding on low-chill varieties.

Tomatoes experience yield reductions outside of their optimal temperature range (for most varieties daytime optimal: 75-95°F, nighttime optimal: 55-70°F). In some counties tomatoes could benefit from increased temperatures, but in Fresno, Kern, Kings, and Merced, tomatoes are economically vulnerable due to the projected increase in winter temperatures and already high summer temperatures. On farm management strategies for these areas are limited to heat tolerant variety selection.

Stone Fruit* are sensitive to increases in summer temperatures, extreme heat events, and reduction in winter chill. The counties most vulnerable to economic loss from climate change are Fresno and Tulare. As spring and summer temperatures rise, the trees are vulnerable to decreased fruit set, decreased size, and sunburn. Early fruit thinning to increase remaining fruit size and irrigation to avoid water stress can mitigate temperature effects. Producer advocacy for increases in low-chill research and breeding could benefit new cultivar options.

*Apricots, cherries, peaches, plums, prunes, and nectarines

Wine & Table Grapes

Wine Grapes are likely to create economic losses in Fresno, Kern, Madera, Merced, Sacramento, and Tulare counties because of moderate yield sensitivity and high flavor sensitivity to temperature increases coupled with high value. Table grapes are temperature sensitive due to cosmetic appearance and have the highest potential for economic loss in Fresno, Kern, and Tulare counties because of projected summer and winter temperature increases. On-farm vineyard techniques that may avoid economic loss include transitioning to varieties with greater heat tolerance, canopy misting, irrigation tactics, trellising type, canopy management, partial shading, reflective material spray, and taller vine training height. Changing varieties may not be feasible due to market demand.