

Forest Service U.S. DEPARTMENT OF AGRICULTURE

National Trends in Forest Disturbance

Jen Costanza, jennifer.costanza@usda.gov USDA Forest Service, Southern Research Station 31 October, 2023

Special thanks to these Forest Service colleagues

- Shelley Crausbay, Office of Sustainability and Climate
- John Coulston, Southern Research Station
- Frank Koch, Southern Research Station
- Miranda Mockrin, Northern Research Station
- Kevin Potter, Southern Research Station
- Kurt Riitters, Southern Research Station
- David Walker, ORISE Fellow

Why should we care about forest disturbances?

Recent trends and future projections: results from the 2020 Resources Planning Act (RPA) Assessment

Wrap up: management implications and future work

Why should we care about forest disturbances?

Disturbances are part of the natural dynamics of forests

Source: USDA / Flickr

Bark beetle mortality

Source: USDA Forest Service Climate Risk Viewer

Source: USDA Forest Service Climate Risk Viewer

Repeat drought exposure

Source: USDA Forest Service Climate Risk Viewer

Drought effects at broad extents

California, c. 2014

Texas, c. 2011

 Forest Service
 https

 U.S. DEPARTMENT OF AGRICULTURE
 https

https://earthobservatory.nasa.gov/images/83124/drought-stressing-californias-plantscape https://forwarn.forestthreats.org/highlights/99

Changing disturbance can transform ecosystems

PARTMENT OF AGRICULTURE

Slide: Shelley Crausbay, USDA Forest Service Adapted from Harris et al. 2018 Nature Climate Change

Post-fire regeneration failure

.S. DEPARTMENT OF AGRICULTURE

Study sites with fires 1988-2011, temperate conifer forests (a) 48 MONTANA 46 Latitude (°) 44 IDAHO 0 WYOMING 42 Lodgepole pine 0 Moist mixed conifer Dry mixed conifer 40 Enve Dry ponderosa pine UTAH 200 km COLORADO 38 -116 -114 -112 -118-110-108-106-104Longitude (°)

Conifer seedlings present

No conifer seedlings present

Stevens-Runman et al. 2018

Drought-triggered transformations

.S. DEPARTME

McKee et al 2004 *Global Ecol Biogeogr*

Slide: Shelley Crausbay, USDA Forest Service

Why should we care about forest disturbances?

- Changes in tree growth or productivity, "stress"
- Tree mortality and temporary loss of forest cover
- Regeneration failure
- Transformation to new forest ecosystems or non-forest
- Disturbance regimes are changing
- Combine with climate change to alter ecosystems

Topics today

Recent trends and future projections: results from the 2020 Resources Planning Act (RPA) Assessment

The 2020 Resources Planning Act (RPA) Assessment

- Broad (regional and national) trends in forest resources
- Recent past; future to 2070
- Climate and socioeconomic scenarios
- Supporting data, publications, land management planning data guides, and more: <u>https://www.fs.usda.gov/research/</u> <u>inventory/rpaa</u>

Resources Evaluated in the 2020 RPA Assessment

Forest Service U.S. DEPARTMENT OF AGRICULTURE

Disturbance in RPA

- Fire and drought: recent trends and future projections
- Invasive plants, insects and disease, forest removals (harvest): Recent trends
- Conterminous U.S., by region, by ecosystem
- Case studies on drought impacts, prescribed fire, sea-level rise
- Primarily analyze *exposure*
- In this talk, focus on fire, drought, disease

(new projections for the North and South)

Disturbance data sources

- Recent fire: Monitoring Trends in Burn Severity (MTBS)
- Recent drought exposure: meteorological index based on PRISM data
- Future drought exposure: meteorological index based on downscaled climate projections
- Future fire (future disease): **RPA Forest Dynamics Model**
 - Status and trends defined by FIA data
 - Projection model focused on moving the FIA inventory forward in time
 - Creates future realizations of the FIA inventory as driven by land use change, regeneration, forest succession and maturing, climate, global demand for wood and wood products
 - Future disturbance projections are generally in terms of volume killed

2020 RPA Assessment scenarios vary in terms of future atmospheric warming and U.S. socioeconomic growth

For each scenario, 5 climate models: Least Warm – MRI-CGCM3 Hot – HadGEM2-ES Dry – IPSL-CM5A-MR Wet – CNRM-CM3 Middle – NorESM1-M

Drought: alternative warming levels only = *10 futures*

Forest area burned by fire has been increasing

Average annual area burned from 2000 to 2017 was more than double the pre-2000 average.

F. Koch *in* Costanza et al. 2023 *RPA Chapter: Disturbance*

Future tree mortality from fire

From Forest Dynamics Model projections Result for the CONUS:

- Between 55-108% increase in tree mortality (volume) by 2070
- Largest increases in the hot and dry climate models in the high warming scenarios.

Areas of moderate and high severity fires

	Change 2020-2070		Change 2020-2070	
	Change in area of moderate- severity fires		Change in area of high- severity fires	
	ha	percent	ha	percent
North	6,000-11,000	483-884 +	-1,300-4,800	-16-62 -
South	12,000-54,000	72-330 +	19,000-70,000	70-256 +
Rocky Mountain	46,000-76,000	108-179 +	-3,300-34,000	-2-24 - / +
Pacific Coast	40,000-53,000	141-185 +	36,000-49,000	69-95 +

Moderate severity: 25-70% of live volume killed High severity: > 70% of live volume killed

Costanza et al. 2023 RPA Chapter: Disturbance

Future tree mortality from fire

Forest type groups in the western U.S. (+) is directional change in annual area of high-severity fires

These type groups usually have relatively low total live volumes and experience frequent, low severity fires

🔶 2020 🔷 2070 - LM 🔶 2070 - HL 🔶 2070 - HM 🔶 2070 - HH

Costanza et al. 2023 RPA Chapter: Disturbance

Future tree mortality from fire

Forest type groups in the eastern U.S. (+) is directional change in annual area of high-severity fires

🔶 2020 🛶 2070 - LM 🔶 2070 - HL 🔶 2070 - HM 🔶 2070 - HH

Costanza et al. 2023 RPA Chapter: Disturbance

Recent forest exposure to drought

Meteorological drought: *36-month* Standardized Precipitation-Evapotranspiration Index (SPEI)

Future drought exposure in forests

S. DEPARTMENT OF AGRICULTURE

Costanza et al. 2023 *RPA Chapter: Disturbance* Costanza et al. 2023 *Ecosphere*

Model agreement: forest exposure by mid-century

Where is more than a tripling of monthly forest exposure projected to occur?

Forest types found in areas of greatest drought exposure

Projected drought exposure of forest types

Monthly proportion of forest exposed to drought in the 10 climates

🔶 1991–2020, Recent 🔶 2041–2070, Mid-century

Costanza et al. 2023 *RPA Chapter: Disturbance* Costanza et al. 2023 *Ecosphere*

Disease mortality: projections for North and South

From Forest Dynamics Model projections

North region

South region

Results from other 2020 RPA Chapters

Area of forest land is expected to decrease

Developed lands are projected to continue to expand in all scenarios by 2070

Developed land use

Forested land use

Mihiar and Lewis 2023 J. Agric and Appl Econ Assoc. Riitters et al. 2023 RPA Chapter: Land Resources

Live volume is projected to increase across the U.S.

Coulston et al. 2023 RPA Chapter: Forest Resources

Live volumes increase in North and South, less so in Rockies and Pacific

Coulston et al. 2023 RPA Chapter: Forest Resources

Results from other 2020 RPA chapters: forest ages

DEPARTMENT OF AGRICULTURE

Coulston et al. 2023 RPA Chapter: Forest Resources

Recent trends and future projections across the U.S.

- Forest disturbances are projected to increase by 2070
 - + Tree volumes burned by wildfire
 - + Areas of moderate and high severity fires
 - + Forest exposure to drought
 - + Forest mortality from diseases
- Disturbances are still projected to affect a relatively small portion of forest area or volume
- Ecological integrity, functioning, and ecosystem services are likely to be affected by increasing disturbance, and those effects may be more local
- Projections of forest dynamics indicate that succession and aging are the dominant signal nationally through 2070
 - Do see some signal in volume trends for Rocky Mountain and Pacific regions
 - Extreme events are relatively rare and their effects are uncertain

Topics today

Wrap up: management implications and future work

Management actions can play a key role in ameliorating effects of disturbance

- Forest thinning alone or in combination with prescribed fire can reduce the effects of disturbances
 - Dry forests in California
 - Pacific Northwest
 - Ponderosa pine forests
- Proactive actions may be critical
- Consistent, broad-scale studies are needed for an actionable framework at regional and national scales

Tree mortality, Sequoia National Forest, 2017

Fettig et. al. 2019 Forest Ecology and Management

New disturbances present novel challenges

Sea-level rise in North America

Geographic distribution of sea-level driven land conversion in North America. a) Red spruce ghost forest and buried stumps, New Brunswick, Canada, **b**) Atlantic white cedar ghost forest in New Jersey (indicated by dashed line), **c**) Salt damaged agricultural field in Virginia, where white and grey areas indicate bare ground, and yellow-red colors represent stressed crops, **d**) Palm tree ghost forest in Florida.

Photo: David Johnson (**a**), Kenneth W. Able (**b**), USDA Farm Service Agency (**c**), and Amy Langston, Virginia Institute of Marine Science (**d**).

Source: Kirwan, M.L., K.B. Gedan. 2019. Sea-level driven land conversion and the formation of ghost forests. Nature Climate Change 9:450–457.

Disturbances in new places present novel challenges

Southern pine beetle: documented migration northward **Figure 5-27**. Forest mortality caused by southern pine beetle in New York and New Jersey from 1999 to 2017.

Source: Insect and Disease Survey data (FHP 2019).

F. Koch, in Costanza et al. 2023 RPA Chapter: Disturbance

People living in or near wildlands present challenges

Housing units in the wildland-urban interface

M. Mockrin, in: Riitters et al. 2023 RPA Chapter: Land Resources

- Risks to human life and property
- Challenges, constraints, complexities for management

Final thoughts

- Disturbances are part of the natural dynamics of forests
- Results in the 2020 RPA indicate they have been increasing and further increases are projected by 2070
- Effects of increasing disturbance on ecological integrity and functioning of forests will be critical to understand
- Changing dynamics of disturbances in a context of climate and landuse change mean new challenges for management and conservation
- Future work in the RPA will focus on quantifying important aspects of forest impacts from disturbance at broad scales

Thank you!

Contact me: jennifer.costanza@usda.gov

2020 RPA Assessment

Supporting data, publications, land management planning data guides, more <u>https://www.fs.usda.gov/research/inventory/rpaa</u>

