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ARTICLE INFO ABSTRACT

Keywords: Extreme heat events will challenge agricultural production and raise the risk of food insecurity. California is the
Adaptation largest agricultural producer in the United States, and climate change and extreme heat may significantly affect
Agriculture the state’s food production. This paper provides a summary of the current literature on crop responses to extreme
California

heat, with a focus on perennial agriculture in California. We highlight contemporary trends and future projec-
tions in heat extremes, and the range of plant responses to extreme heat exposure, noting the variability in plant
tolerance and response across season, crop, and cultivar. We also review practices employed to mitigate heat
damage and the capacity for those practices to serve as adaptation options in a warmer and drier future. Finally,
we discuss current and future research directions aimed at increasing the adaptive capacity of perennial agri-
culture to the increased heat exposure anticipated with climate change. Collectively, the literature reviewed
makes clear the need to understand crop responses and tolerances to heat within the context of climate change
and climate extremes in order to sustain crop production, preserve agricultural communities, and bolster food

Climate change
Extreme heat
Heatwaves

security at local, national, and global scales.

1. Introduction

Extreme heat exposure can stress plants, stunt development, and
cause plant mortality, which often results in reduced quality and lower
yield in agricultural crops [1]. Diminished crop yields due to extreme
heat can have cascading effects on global economies and heighten
concerns around food availability [2-4]. Recent heatwaves in Europe
[2,3], Russia [4], and the central United States [5] reduced yields for
cereal crops, and in some instances led to significant commodity price
increases and spikes in food insecurity. Warming anomalies have also
caused significant losses in woody perennial cropping systems. For
example, abnormally warm winter and spring temperatures in 2015
resulted in more than $240 million in combined crop indemnity pay-
ments to almond, cherry, grape, pistachio, peach, and walnut growers
in California [6,7]. These losses have widespread repercussions for
California as the producer of more than two-thirds of US-grown fruits
and nuts, including more than 99% of many US-grown high-value
perennials [8].

California’s Mediterranean climate — characterized by cold, wet

winters and warm, dry summers — coupled with elaborate infrastructure
that enables widespread irrigation, makes the state ideal for cultivating
a wide variety of crops. In such irrigated agriculture systems, where
water application is the primary strategy employed to mitigate heat
stress responses, increased heat exposure raises water demand and can
strain limited water resources. During the mid-2010s California
drought, surface water shortages and groundwater storage deficits
limited water application as a heat management strategy [9]. Coupled
with the dry, hot summer typical of a Mediterranean climate, the on-
going drought precipitated crop yield declines, fallowed lands, and an
increased cost of water application [10]. During the height of the multi-
year drought, the cost to the state’s agricultural sector included direct
losses in crop revenue of ~ $1.9 billion, total economic impacts topping
$5.5 billion, and job losses in the tens of thousands [10-12]. Although
retail pricing for California crops only increased marginally due to a
complex and globalized food system, the agricultural-sector job losses
increased social, economic, and food insecurity for vulnerable com-
munities across the state [13].

Highly seasonal precipitation regimes, as is the case in much of
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California, present a mismatch in water supply and plant-water demand
resulting in reduced availability of water resources at the time it is most
needed. Recent research suggests that most Mediterranean climates
around the world will dry in the coming decades under climate change,
though projections for California are more nuanced and include dra-
matic swings from exceptionally wet to exceptionally dry years
[14-16]. Likewise, climate change is projected to increase average
temperatures, heat extremes, and stress in these climates [17-19], and
shift winter precipitation regimes from snow to rain, which may com-
plicate water management and delivery [20]. In addition to these
physical drivers, policy and regulation can reduce water availability
through limiting access to surface or groundwater supplies. Current and
future regulatory restrictions to groundwater pumping in California
(e.g. [21,22]), anticipated warming, and asynchronous water avail-
ability relative to demand will undoubtedly challenge agricultural
systems across the state.

One of the grand challenges facing society in the coming decades is
to sustainably maintain - if not increase — agricultural production to
meet the nutritional and caloric needs of a growing population. Given
their importance in meeting global caloric needs, research relating
climate change impacts on agriculture to food security often focuses on
commodity crops (e.g. [23,24]). However, due to the economic im-
portance of high-value specialty crops and the relationships between
economic security and food security [25,26], understanding the myriad
effects of climate change on perennial specialty crop production pro-
vides a unique framing for anticipating the broad and far-reaching
impacts of climate change on food security. As the United States’
leading agricultural state and one of the top 10 agricultural economies
in the world [27], California is a fitting location to examine the effects
of extreme heat exposure on perennial specialty crops and the adap-
tation strategies employed to ameliorate damages.

2. Methods

Here we provide a brief review of the current state of knowledge on
the impacts of and adaptation strategies for detrimental heat exposure
in California perennial specialty crops. We synthesize information from
a variety of sources, including peer reviewed literature, state and na-
tional agricultural agency reports, and agricultural extension white
papers. Our review focuses on those specialty crops with both high
economic value as well as those identified by Kerr et al. [28] as having
moderate or high sensitivity to summer temperature increases, and we
further limit our review to select perennial crops: almonds, grapes,
peaches, pistachios, and walnuts. While these crops may be grown
widely across the state, we primarily restrict our geographic references
to 6 agricultural regions within California, chosen and delineated based
on crop density, climatic considerations, and groundwater basin
boundaries (Fig. 1); however, we do not limit our literature review to
only studies conducted in these regions. Similarly, because what con-
stitutes extreme temperatures can vary depending on the crop species,
cultivar, and phenological phase, we do not limit our literature review
to an a priori definition of ‘extreme.’

The review is organized as follows: We first provide a brief review of
current trends and future projections of heat extremes across California.
We then present an overview of each of our selected crops within the
context of California agriculture, and examine the effects of cool- and
warm-season heat extremes on crop development, yield, and quality.
Finally, we explore available adaptive management strategies for
California perennial specialty crops, and identify areas of on-going
heat-related research in these cropping systems.

3. Defining heat extremes
Heat extremes are often considered warm season hazards, but

anomalously warm temperatures during the cool season can also affect
agricultural and natural systems. In California, both cool- and warm-
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season heat events are principally driven by global- and synoptic-scale
atmospheric patterns [19,29-31], though local-scale wind patterns can
also lead to late-season heatwaves in southern California [19]. Re-
gardless of season of occurrence or atmospheric driving mechanism,
there is no consistent means of quantifying temperature extremes. De-
finitions or characterizations of extremes may incorporate fixed
threshold values, occurrence probabilities or percentile values, tem-
poral variations, diurnal considerations, or degree of impact on eco-
systems and society [19,32,33]. Despite variable definitions for heat
events, numerous studies have attributed trends in the intensity, fre-
quency, and duration of heat extremes to anthropogenic climate change
[34].

Across California, contemporary average annual temperatures rose
~1.1°C relative to the first half of the 20th century, and are projected to
increase by ~3.1-4.9°C by 2100 [20]. Cool-season temperatures have
also increased and anomalous heat events during the cool season have
become more frequent over the past ~35 years [30]. Climate change
projections suggest a continued warming trend in cool-season tem-
peratures, with minimum temperatures warming faster than cool-
season average temperatures [35,36]. Trends in summer heat wave
intensity and frequency in California have also been positive over the
long-term observed period and climate change is projected to further
these trends [19,37]. However, the magnitude of projected changes in
heat extremes varies across the state and the proportionate intensity of
heat waves in some regions may be moderated by background warming
[19].

To illustrate the spatial heterogeneity in projected changes, we
calculated the anticipated differences in three measures of extreme heat
exposure across California for the warm (April-September) and cool
(October-March) seasons using observed [38] and projected [39] daily
climate data. For each season, we compared contemporary
(1981-2010) and end-of-century (2070-2099) climatologies for the
average number of days with Ty, > 38°C (Fig. 2a, d), the average
number of days with Tp,., > 98th percentile of contemporary Tax
(> Tmax os, Fig. 2b, e), and the average number of 3-day Tpax os heat-
waves (Fig. 2¢, f). We encourage the reader to refer to these projected
changes in extreme heat in light of the following sections, which review
crop-specific heat responses and the associated adaptive measures.

4. Crop response to extreme heat
4.1. California perennial agriculture

California is the primary or sole producer of US-grown almonds,
grapes, peaches, pistachios, and walnuts (Table 1). Collectively, these
high-value perennials cover ~2.45 million acres and generate more
than $14 billion in cash receipts, comprising more than 28% of the
state’s direct agricultural value [8]. With the exception of winegrapes,
which have significant acreage in coastal regions, the majority of these
crops are grown in California’s Central Valley (comprised of the Sa-
cramento and San Joaquin Valleys, and the Sacramento-San Joaquin
Delta region), with additional acreage in the Salinas, Coachella, and
Imperial Valleys (Fig. 1). Although management practices, cultivar se-
lection, and - for some crops - life history traits make these perennials
well-adapted to California’s climate, projected increases in the fre-
quency, intensity, and duration of extreme heat will likely impact cul-
tivation.

4.2. Crop responses to cool-season heat exposure

For crops well-adapted to summer heat, detrimental heat exposure
occurs primarily during the cool season, when anomalously warm
temperatures occur during dormancy and/or bloom. Many temperate-
climate perennials require the accumulation of chill for dormancy re-
lease and flowering and fruit development, with the amount of neces-
sary exposure to cool temperatures ranging from fewer than 200 to
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Fig. 1. Almonds, grapes, peaches, pistachios, and walnuts are largely concentrated within 6 California agricultural regions, with the majority of cultivation falling
within the Sacramento and San Joaquin Valleys and Delta, which collectively comprise California’s Central Valley. Grapes are a notable exception, with significant
cultivation of winegrapes occurring in coastal hills south and west of the Salinas Valley, and west of the Sacramento Valley.

more than 1000 chill hours (i.e. hours below 7.2°C), depending on the
crop and cultivar (Table 2). Exposure to anomalous warmth during
dormancy can delay or prevent chill accumulation, which can cause
delayed or asynchronous bloom, a compressed flowering and pollina-
tion window, delayed vegetative development and altered leaf mor-
phology, fruit set failure, and reduced yields [40-42]. The 2015 Cali-
fornia pistachio crop was devastated by a warm winter and subsequent
insufficient chill, which resulted in more than $180 million in losses
[6,71.

Crop insurance claims citing heat exposure as the cause of in-
demnity identify the spring flowering and fruit set period as a heat-
sensitive period for almonds, pistachio, and peach (Fig. 3; [7]). In al-
monds, extreme or unseasonably warm temperatures during bloom can
dessicate and reduce receptivity of stigmas, shorten the effective pol-
lination period, and subsequently limit fruit set (e.g. [43]), while in
peaches, high early-spring temperatures have been linked to a decrease
in the size of fruit at harvest [44]. Additionally, research suggests that
temperatures above ~30°C during flowering can be detrimental to the
hormone production needed for cell division and differentiation in al-
mond [45] - a relationship that may hold true for other Prunus species
like peach. Further, though insurance data suggest cool-season heat
exposure in grapevine is less problematic than during other times of
year, extreme heat during bloom in grapes can result in shortened floral
length and early flower drop, reduced pollen viability, limited fruit set,
and fewer berries per cluster [46,47].

4.3. Crop responses to warm-season heat exposure

There is limited literature on the effects of warm-season heat ex-
tremes on perennial crops in California, likely because detrimental
impacts have only recently been frequent enough to prompt directed

response from the research community. Current understanding in the
state — where irrigation provides a buffer for heat stress — suggests that
the negative effects of warm-season extreme heat on perennial crops are
largely a function of water stress. During water stress, stomata close to
prevent water loss, but this comes at the cost of reduced carbon capture
and higher leaf temperatures. Once stomata close, leaf water loss is then
limited to a residual amount through the cuticle or leaky stomata.
Cuticular conductance is known to increase exponentially above a
phase transition temperature [48], and because of the high vapor
pressure deficit associated with high air temperature, Cochard [49]
recently proposed that leaf residual transpiration increases sharply
under hot conditions, which could lead to catastrophic failure in the
plant hydraulic system. Further work is needed to test this hypothesis
across a greater diversity of species and in irrigated agricultural sys-
tems.

The combination of heat and water stress has great potential to
affect crop yield, size, and quality. For example, moderate-to-severe
water stress during nut development can reduce yield, size, and quality
in almond and pistachio (e.g. [50,51]). Similarly, modeled effects of
water stress in peach show reductions in fruit size, though moderate
water stress may simultaneously increase fruit quality as sugar con-
centrations increase due to lower fruit water content [52]. In grapevine,
though heat tolerance and physiological response varies across cultivars
and genotypes [53], research has shown that temperatures > 35°C may
slow physiological processes and can scar, crack, or discolor berries,
irrespective of water application [47]. Extreme heat can also decrease
winegrape berry size and fresh weight, particularly when exposure
occurs during veraison and mid-ripening [46]. Further, extreme heat
exposure during ripening can influence sugar accumulation, phenolic
development, total phenol and anthocyanin concentrations, soluble
solids, and proline and malate concentrations [54] — all of which can
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Fig. 2. The projected change between the observed contemporary (1981-2010) and modeled future (2070-2099, RCP 8.5) average annual number of (a) warm-
season days with Tp.x > 38°C, (b) warm-season days with Tya, > 98th percentile of observed 1981-2010 annual daily Ty,ay, () warm-season 3-day heatwave events
with Tpax > 98th percentile of observed 1981-2010 annual daily Tpay (d) cool-season days with Tp,ax > 38°C, (e) cool-season days with Ty, > 98th percentile of
observed 1981-2010 annual daily Ty,ax, and (f) cool-season 3-day heatwave events with Ty, > 98th percentile of observed 1981-2010 annual daily Ty,.x, Where the

warm (cool) season is defined as April-September (October-March).

Table 1

The total California acreage and crop cash receipts for 5 selected high-value
perennial crops, as well as the national (CDFA, [8]) and global (FAO [95],) rank
in crop production. Data are from 2017.

Crop Area (x 1000 Value (x $1,000,000) National (Global)
acres) Rank

Almond 1000.0 5,603.9 1)

Grapes (all)  829.0 5,793.2 1)

Peaches 38.3 371.5 1(5%)

Pistachios 250.0 1,014.5 1(2)

Walnuts 335.0 1,593.9 1(2)

* Global production values include nectarines.

shape the winemaking process and ultimately wine quality character-
istics such as color and aroma (e.g. [55]).

4.4. Projected future climate effects on heat exposure

As climate change increases average and extreme maximum cool-
season temperatures, the reduction in chill accumulation across much
of California (Fig. 4) may reduce areas with suitable chill for some of
the state’s high-value perennials. For example, for cultivars re-
quiring > 700 chill hours, ~50-75% of California’s Central Valley may

not receive reliably sufficient chill for peach cultivation by mid-century,
and as little as 2-10 % of the region may remain suitable by the end of
the 21st century [56]. Similarly, the high chill requirements of pis-
tachios and walnuts may eliminate their cultivation in California as
early as 2060 (Table 2; Fig. 4; [56]). Further, as slowed chill accumu-
lation can delay bloom in perennials, climate change may shift this
sensitive development period into the warmer weeks of spring, in-
creasing the risk of extreme heat exposure during flowering. However,
warmer spring temperatures can also accelerate floral development
(e.g. [57,58]), which may compensate for any delays in bloom and allay
heat-induced damages that would otherwise result from later flowering.

Average and extreme maximum temperatures during the warm
season are also projected to increase under future climate scenarios
[20]. These warming scenarios will have mixed effects on perennial
crop yields across the state [59], and may lead to shifts in the geo-
graphic distribution of crops such as winegrapes [60]. Specifically, in-
creased frequency of extreme heat days (> 35°C) over the 21st century
may reduce suitability for winegrape production across much of Cali-
fornia’s Central and North Coasts and Salinas Valley [61]. However,
these future distribution and suitability models are not based on
grapevine physiology [62], and adaptive practices were not considered
despite adaptive management having the capacity to cut potential Ca-
lifornia winegrape production losses by more than half [63].
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Table 2

Approximate range of chill requirements for selected high-value perennial
crops. Minimum chill requirements vary across cultivars. Cultivars highlighted
here (provided in italics) are examples of California’s commonly-grown culti-
vars.

Crop Approximate Chill Hours (< 7.2°C) Source
Almond 200-600

Nonpareil 400 [96]
Grape 100-400

Chardonnay 135 [97]

Cabernet Sauvignon 395 [97]
Peach 400-1000

O’Henry 750 [98]
Pistachio 700-1000

Kerman 700 [99]

Peters 900 [99]
Walnut 400-1500

Hartley 1000 [100]

5. Adaptive measures and current research for managing extreme
heat exposure

5.1. Irrigation

Current practices for ameliorating warm-season heat events are
largely limited to altering the amount and timing of irrigation water
application. While irrigating to meet the full evaporative demands of
crops may be ideal for reducing plant stress during extreme heat, mild
water stress controlled through deficit irrigation strategies may provide
improved crop quality. For example, regulated deficit irrigation (RDI)
during early- and mid-summer hull split in almonds can result in more
uniform maturity and reduce the damaging effects of hull rot [64], and
RDI in peach production can provide water savings while improving
crop quality [65]. In winegrapes, carefully-managed water stress can
reduce water use and control vegetative vigor while maintaining yield
and quality in [66].

Future climate conditions are likely to challenge the reliance on
irrigation as a management strategy for extreme heat exposure. For
example, increased groundwater withdrawals — particularly during
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hot-drought events — will likely result in the application of water with
suboptimal quality (e.g., greater salinity) [67]. With the widespread
adoption of high-efficiency irrigation systems, quickly applying large
amounts of water to may be difficult, and if extreme heat occurs during
critical development stages that do not tolerate water stress (e.g. late-
summer bud differentiation in almond, or prior to veraison in grape-
vine), there may be greater limitations to alternative irrigation sche-
duling. Conversely, saturating soils may incite other production chal-
lenges, such as increased disease susceptibility [68].

Recent research efforts have focused on improving irrigation effi-
ciencies, assessing rootstock tolerance to limited water application, and
the widening use of in situ measures of soil water availability and plant
water stress to improve irrigation scheduling [69,70]. Additionally,
new remote sensing evapotranspiration toolkits based on thermal
imagery will improve winegrape growers’ ability to quantify additional
water needs during heatwaves [71], and peach growers may increase
water savings through adopting irrigation recommendations derived
through real-time thermal infrared temperature data [72].

5.2. Site management

Several additional management strategies have the capacity to mi-
tigate damage due to extreme heat. Cover crops can act to improve soil
health through high organic matter and microbial biomass, and reduce
summer orchard temperature [73,74], offering an adaptive manage-
ment strategy for locations and crop systems most concerned with
warm-season heat exposure. However, we note that the benefits of
cover crops can vary by cover type (e.g. legumes vs. grasses), and in
spring, cover crops have been shown to reduce the amount of available
soil water and increase frost risk [74,75]. Shade nets may help to mi-
tigate impacts of warm-season heat extremes and may improve fruit
quality in peaches [76,77], though shading in grapes, while cooling the
canopy, has in some cases been shown to have detrimental effects on
anthocyanin and phenolic development in berries, which are important
to grape quality [78,79]. In grapevine, planting new vineyards with a
northeast-southwest orientation and altering trellis style to provide
greater shade may be preferred as these approaches can reduce in-
coming solar radiation exposure and mitigate sun- and heat-induced

Grapes Peaches

20

0.5 4

0.0

J FMAMUJJASOND

Walnuts

J FMAMUJJASOND

Fig. 3. Total crop losses (y-axis) by month (x-axis) over the 1989-2017 period, where the cause of loss was listed as “Heat.” Losses are represented by insurance
indemnity payments in millions of dollars. Graphs downloaded from AgRisk Viewer [7].
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Fig. 4. Changes in the 10th quantile of winter chill accumulation over the Central Valley of California under modeled historic and future climate scenarios [56].

damages [80].

Research on future site suitability and bioclimatic niche have
identified the potential need and geographic options for the translo-
cation of some crops, such as winegrapes and almonds, to higher lati-
tudes, altitudes, or more coastal regions where cooler climates mitigate
increases in average and extreme warm temperatures [58,60,61].
However, while shifting crop geographies may provide a potential long-
term adaptive strategy, this option requires appreciable capital and
would likely be met with challenges such as competing land use; water
availability; additional costs associated with crop processing, distribu-
tion, and industry marketing; and sociological considerations such as
regional culture.

5.3. Cultivar selection

In crops with a wide range of chill requirements, selecting for cul-
tivars with lower chill needs can provide some adaptive capacity to
warming winters, and in some crops, response to insufficient chill ac-
cumulation may be influenced by rootstock [81,82]. Cultivar and
rootstock selection can also provide some resiliency to warm-season
heat extremes when selecting for heat and/or drought tolerance in
pistachio [83] and grapevine [53,84,85].

Current drought-related research in rootstock includes efforts to
identify salt-tolerant rootstocks [86], while in crop breeding programs,
heat tolerance studies involve the development of low-chill varieties for
cultivation in subtropical climates (e.g. peaches [87]). Researchers have
noted the importance of collecting, cataloguing, and using existing
genetic diversity — often from crop wild relatives — for future food se-
curity [88,89]. Research has also identified heat tolerance as being
highly complex, plastic, likely polygenic, and variable across species,
variety, and developmental stage, making successful breeding for heat
tolerance time consuming and costly [90]. However, biotechnology

improvements may provide future opportunities to develop heat-tol-
erant crops in a timely and cost effective manner by capitalizing on
genetic resources such as USDA Agricultural Research Service germ-
plasm repositories [91,92].

6. Concluding remarks

In this review we highlight how more frequent, intense, and longer-
duration heat extremes projected under climate change, especially in
combination with background warming, may influence and/or stress
perennial crops, and potentially limit crop production and reduce crop
quality. We underscore that the sensitivity of perennial crops and their
vulnerability to heat-induced damage can vary widely by crop, cultivar,
and development phase. Additionally, we present adaptive strategies to
mitigate damages from extreme heat exposure, though we note that
successful adaptation depends on the availability of technological or
biological solutions, as well as policy and economics [93]. However,
even when accounting for adaptive action, climate change is none-
theless anticipated to have wide-ranging impacts on agricultural pro-
duction across California, the US, and around the world [59,94].

While we have discussed what is known about the effects of, and
adaptation measures for, extreme heat on perennial crops, we also
elucidate that there are numerous gaps in knowledge surrounding crop
tolerance and response to extreme heat, appropriate adaptive strategies,
and what the intersection of these responses and strategies may mean
for crop production broadly. The impacts of heat stress on agricultural
systems are not a suppositional problem; rather, they are being ex-
perienced across California and around the globe in the present, and
their wide-ranging effects emphasize the exigency for focused research
on crop responses and sustainable adaptation strategies. Ultimately,
both fundamental and applied research will be critical if we are to meet
the challenges of preserving crop production, bolstering agricultural
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communities and the agricultural economy, and strengthening food
security at local, national, and global scales in the face of climate
change and associated heat extremes.
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